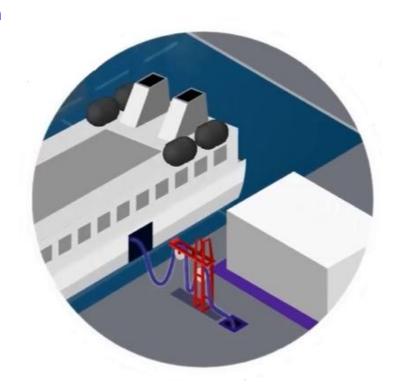
elemed

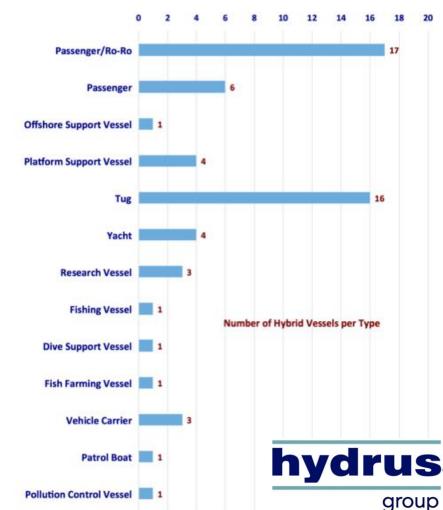
electrification in the **e**astern **med**iterranean


Approaching an Innovative e-Ferry Design

Polychronis S.MERTIKAS

Naval Architect & Marine Engineer

Powering zero-emission marine transportation Athens, 27/2/2018



Recent Developments

Case-studies reported under ELEMED indicate that:

- Hybrid and all-Electric vessel designs operating in European waters mainly cover Passenger/Ro-Ro vessels and Tug boats with installed battery packs of embedded power up to 2700kWh;
- Hybrid designs are significantly more in number and refer to larger power installations;
- Hybrid and all-Electric vessel designs increase both in number of applications as well as volume of power embedded in the battery packs;

Benefits of an all-Electric Design

- Evident improved environmental impact due to zero-emission by design
- ✓ Improved impact due to noise and vibration
- Amelioration of quality life onboard and around the ports
- Increased overall efficiency
- Reduced maintenance costs
- Flexibility in machinery arrangements
- ✓ Potential leverage of renewable energy in shipping
- √ Facilitating sustainable growth

Scope of an all-Electric Ferry Design

- ✓ Optimize operational characteristics (capacities, range and speed) against power requirements and the size as well as cost of battery packs installation
- ✓ Tackle the particularities of East-Med coastal needs (connecting ports distance, meeting rush-period needs, port facilities and sizes)
- ✓ Design size and characteristics that would allow construction within the East-Med region targeting feasible realization and sustainable growth
- Enhanced safety and reliability
- Enhancing uptake of innovative technologies
- ✓ Optimum blending of proven naval architecture and engineering solutions with cutting edge available off-the-shelve technologies

Proposed all-Electric Ferry Concept Design

- ✓ Twin-hull design optimizing carrying capacities
- ✓ Operation range of abt. 20nm and speeds of up to 19 knots making the most out of feasible battery power pack installation
- ✓ Electric motor driven propeller shafting design with customized side thrusters arrangements to meet specific needs
- Customized accommodation size and arrangement

Largest sized battery installation in the East-Med

Proposed all-Electric Ferry Concept Design

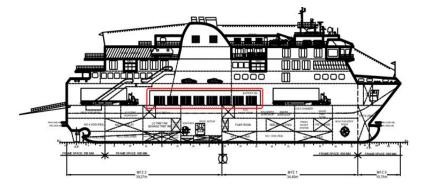
The Battery Energy Storage System is expected to provide reliability in terms of adequate embedded energy and weight minimization:

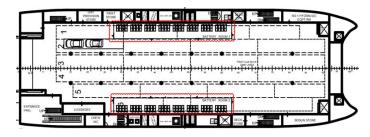
Requirement: Adequate port infrastructures for charging facilities

Proposed all-Electric Ferry Concept Design

Principle characteristics:

✓ Length: abt. 85m


Capacities: abt. 1175 Passenger


abt. 87 cars

abt. 288m of Truck Lanes

✓ Speed: 17 knots

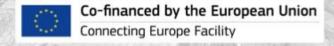
✓ Battery: 8MWh

Approaching the Approval-in-Principle Stage

Core design submitted for evaluation towards meeting approval-in-principle for the Battery Energy Storage System:

- ✓ Battery Room Layout and Proposed Locations
- ✓ Technical Description of Proposed Charging Method
- ✓ Shore Connection Charging Room Design
- ✓ Battery Room Design Installation Criteria
- ✓ System Integration & One-Line Diagram
- ✓ Technical Description of Propulsion Motors, Side Thrusters, Auxiliary Engines, Power Conversion Equipment, Circuit Breakers, DC Distribution System
- ✓ Ventilation & Cooling Arrangements for the Battery Rooms
- ✓ Fire Protection & Explosion Prevention Measures
- ✓ Orderly Evacuation and Abandonment Plan

More to be announced within the next few exciting weeks!


Polychronis S. MERTIKAS

Naval Architect & Marine Engineer mertikas@hydrus-group.gr

Thank you

